Papers
Topics
Authors
Recent
2000 character limit reached

Structural Properties, Cycloid Trajectories and Non-Asymptotic Guarantees of EM Algorithm for Mixed Linear Regression (2511.04937v1)

Published 7 Nov 2025 in cs.LG

Abstract: This work investigates the structural properties, cycloid trajectories, and non-asymptotic convergence guarantees of the Expectation-Maximization (EM) algorithm for two-component Mixed Linear Regression (2MLR) with unknown mixing weights and regression parameters. Recent studies have established global convergence for 2MLR with known balanced weights and super-linear convergence in noiseless and high signal-to-noise ratio (SNR) regimes. However, the theoretical behavior of EM in the fully unknown setting remains unclear, with its trajectory and convergence order not yet fully characterized. We derive explicit EM update expressions for 2MLR with unknown mixing weights and regression parameters across all SNR regimes and analyze their structural properties and cycloid trajectories. In the noiseless case, we prove that the trajectory of the regression parameters in EM iterations traces a cycloid by establishing a recurrence relation for the sub-optimality angle, while in high SNR regimes we quantify its discrepancy from the cycloid trajectory. The trajectory-based analysis reveals the order of convergence: linear when the EM estimate is nearly orthogonal to the ground truth, and quadratic when the angle between the estimate and ground truth is small at the population level. Our analysis establishes non-asymptotic guarantees by sharpening bounds on statistical errors between finite-sample and population EM updates, relating EM's statistical accuracy to the sub-optimality angle, and proving convergence with arbitrary initialization at the finite-sample level. This work provides a novel trajectory-based framework for analyzing EM in Mixed Linear Regression.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.