Papers
Topics
Authors
Recent
2000 character limit reached

Representational power of selected neural network quantum states in second quantization (2511.04932v1)

Published 7 Nov 2025 in quant-ph, cond-mat.str-el, and physics.chem-ph

Abstract: Neural network quantum states emerge as a promising tool for solving quantum many-body problems. However, its successes and limitations are still not well-understood in particular for Fermions with complex sign structures. Based on our recent work [J. Chem. Theory Comput. 21, 10252-10262 (2025)], we generalizes the restricted Boltzmann machine to a more general class of states for Fermions, formed by product of `neurons' and hence will be referred to as neuron product states (NPS). NPS builds correlation in a very different way, compared with the closely related correlator product states (CPS) [H. J. Changlani, et al. Phys. Rev. B, 80, 245116 (2009)], which use full-rank local correlators. In constrast, each correlator in NPS contains long-range correlations across all the sites, with its representational power constrained by the simple function form. We prove that products of such simple nonlocal correlators can approximate any wavefunction arbitrarily well under certain mild conditions on the form of activation functions. In addition, we also provide elementary proofs for the universal approximation capabilities of feedforward neural network (FNN) and neural network backflow (NNBF) in second quantization. Together, these results provide a deeper insight into the neural network representation of many-body wavefunctions in second quantization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: