Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Robust Forecasting of Sequences with Periodically Stationary Long Memory Multiplicative Seasonal Increments Observed with Noise and Cointegrated Sequences (2511.04905v1)

Published 7 Nov 2025 in math.ST and stat.TH

Abstract: The problem of optimal estimation of linear functionals constructed from unobserved values of stochastic sequence with periodically stationary increments based on observations of the sequence with a periodically stationary noise is considered. For sequences with known spectral densities, we obtain formulas for calculating values of the mean square errors and the spectral characteristics of the optimal estimates of the functionals. Formulas that determine the least favorable spectral densities and minimax (robust) spectral characteristics of the optimal linear estimates of functionals are proposed in the case where spectral densities of the sequence are not exactly known while some sets of admissible spectral densities are given.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 13 likes.

Upgrade to Pro to view all of the tweets about this paper: