Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

DARN: Dynamic Adaptive Regularization Networks for Efficient and Robust Foundation Model Adaptation (2511.04766v1)

Published 6 Nov 2025 in cs.CV

Abstract: Foundation models (FMs) offer powerful representations for geospatial analysis, but adapting them effectively remains challenging. Standard adaptation methods, whether full fine-tuning or efficient frozen-backbone approaches, typically employ decoders with fixed regularization strategies, failing to account for the significant heterogeneity in satellite imagery. We introduce Dynamic Adaptive Regularization Networks (DARN), a novel decoder architecture designed to address this limitation. DARN integrates three key innovations: (1) a lightweight Task Complexity Predictor (TCP) that estimates per-sample difficulty, (2) Adaptive Dropout Modulation (ADM), dynamically adjusting dropout rates (from 0.1 to 0.5) based on predicted complexity, and (3) Dynamic Capacity Gating (DCG) that modulates channel activation. We provide theoretical justifications linking DARN's optimization to stationary point convergence and its mechanism to adaptive information bottlenecks. Empirically, DARN demonstrates exceptional performance across both major adaptation paradigms. In full fine-tuning (unfrozen backbone), DARN achieves a new state-of-the-art on the multi-task GeoBench benchmark (86.66% mIoU, +5.56 pp over prior SOTA). In efficient adaptation (frozen backbone), DARN achieves SOTA-competitive accuracy (90.5% mIoU on Sen1Floods11) while delivering substantial advantages crucial for real-world deployment: superior out-of-distribution (OOD) generalization (+9.5 pp mIoU on AI4SmallFarms), enhanced robustness (17% relative reduction in corruption error), and improved performance on minority classes. DARN offers a more intelligent, robust, and efficient approach to leveraging FMs in critical geospatial applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: