Papers
Topics
Authors
Recent
2000 character limit reached

TT-Prune: Joint Model Pruning and Resource Allocation for Communication-efficient Time-triggered Federated Learning

Published 6 Nov 2025 in cs.LG | (2511.04653v1)

Abstract: Federated learning (FL) offers new opportunities in machine learning, particularly in addressing data privacy concerns. In contrast to conventional event-based federated learning, time-triggered federated learning (TT-Fed), as a general form of both asynchronous and synchronous FL, clusters users into different tiers based on fixed time intervals. However, the FL network consists of a growing number of user devices with limited wireless bandwidth, consequently magnifying issues such as stragglers and communication overhead. In this paper, we introduce adaptive model pruning to wireless TT-Fed systems and study the problem of jointly optimizing the pruning ratio and bandwidth allocation to minimize the training loss while ensuring minimal learning latency. To answer this question, we perform convergence analysis on the gradient l_2 norm of the TT-Fed model based on model pruning. Based on the obtained convergence upper bound, a joint optimization problem of pruning ratio and wireless bandwidth is formulated to minimize the model training loss under a given delay threshold. Then, we derive closed-form solutions for wireless bandwidth and pruning ratio using Karush-Kuhn-Tucker(KKT) conditions. The simulation results show that model pruning could reduce the communication cost by 40% while maintaining the model performance at the same level.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.