Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Universality Classes with Strong Coupling in Conserved Surface Roughening: Explicit vs Emergent Symmetries (2511.04640v1)

Published 6 Nov 2025 in cond-mat.stat-mech, math-ph, and math.MP

Abstract: The occurrence of strong coupling or nonlinear scaling behavior for kinetically rough interfaces whose dynamics are conserved, but not necessarily variational, remains to be fully understood. Here we formulate and study a family of conserved stochastic evolution equations for one-dimensional interfaces, whose nonlinearity depends on a parameter n, thus generalizing that of the stochastic Burgers equation, whose behavior is retrieved for n=0. This family of equations includes as particular instances a stochastic porous medium equation and other continuum models relevant to various hard and soft condensed matter systems. We perform a one-loop dynamical renormalization group analysis of the equations, which contemplates strong coupling scaling exponents that depend on the value of $n$ and may or may not imply vertex renormalization. These analytical expectations are contrasted with explicit numerical simulations of the equations with n=1,2, and 3. For odd n, numerical stability issues have required us to generalize the scheme originally proposed for n=0 by T. Sasamoto and H. Spohn. Precisely for n=1 and 3, and at variance with the n=0 and 2 cases (whose numerical exponents are consistent with non-renormalization of the vertex), numerical strong coupling exponent values are obtained which suggest vertex renormalization, akin to that reported for the celebrated conserved KPZ equation. We also study numerically the statistics of height fluctuations, whose probability distribution function turns out (at variance with cKPZ) to have zero skewness for long times and at saturation, irrespective of the value of n. However, the kurtosis is non-Gaussian, further supporting the conclusion on strong coupling asymptotic behavior. The zero skewness seems related with space symmetries of the n=0 and 2 equations, and with an emergent symmetry at the strong coupling fixed point for odd values of n.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 11 likes.

Upgrade to Pro to view all of the tweets about this paper: