Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Unified Theory of Adaptive Variance Reduction (2511.04569v1)

Published 6 Nov 2025 in math.OC

Abstract: Variance reduction is a family of powerful mechanisms for stochastic optimization that appears to be helpful in many machine learning tasks. It is based on estimating the exact gradient with some recursive sequences. Previously, many papers demonstrated that methods with unbiased variance-reduction estimators can be described in a single framework. We generalize this approach and show that the unbiasedness assumption is excessive; hence, we include biased estimators in this analysis. But the main contribution of our work is the proposition of new variance reduction methods with adaptive step sizes that are adjusted throughout the algorithm iterations and, moreover, do not need hyperparameter tuning. Our analysis covers finite- sum problems, distributed optimization, and coordinate methods. Numerical experiments in various tasks validate the effectiveness of our methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.