Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 114 tok/s
Gemini 3.0 Pro 53 tok/s Pro
Gemini 2.5 Flash 132 tok/s Pro
Kimi K2 176 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Scaling advantage with quantum-enhanced memetic tabu search for LABS (2511.04553v1)

Published 6 Nov 2025 in quant-ph and cond-mat.stat-mech

Abstract: We introduce quantum-enhanced memetic tabu search (QE-MTS), a non-variational hybrid algorithm that achieves state-of-the-art scaling for the low-autocorrelation binary sequence (LABS) problem. By seeding the classical MTS with high-quality initial states from digitized counterdiabatic quantum optimization (DCQO), our method suppresses the empirical time-to-solution scaling to $\mathcal{O}(1.24N)$ for sequence length $N \in [27,37]$. This scaling surpasses the best-known classical heuristic $\mathcal{O}(1.34N)$ and improves upon the $\mathcal{O}(1.46N)$ of the quantum approximate optimization algorithm, achieving superior performance with a $6\times$ reduction in circuit depth. A two-stage bootstrap analysis confirms the scaling advantage and projects a crossover point at $N \gtrsim 47$, beyond which QE-MTS outperforms its classical counterpart. These results provide evidence that quantum enhancement can directly improve the scaling of classical optimization algorithms for the paradigmatic LABS problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.