Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Robust mean-field control under common noise uncertainty (2511.04515v1)

Published 6 Nov 2025 in math.OC, math.PR, and q-fin.MF

Abstract: We propose and analyze a framework for discrete-time robust mean-field control problems under common noise uncertainty. In this framework, the mean-field interaction describes the collective behavior of infinitely many cooperative agents' state and action, while the common noise -- a random disturbance affecting all agents' state dynamics -- is uncertain. A social planner optimizes over open-loop controls on an infinite horizon to maximize the representative agent's worst-case expected reward, where worst-case corresponds to the most adverse probability measure among all candidates inducing the unknown true law of the common noise process. We refer to this optimization as a robust mean-field control problem under common noise uncertainty. We first show that this problem arises as the asymptotic limit of a cooperative $N$-agent robust optimization problem, commonly known as propagation of chaos. We then prove the existence of an optimal open-loop control by linking the robust mean field control problem to a lifted robust Markov decision problem on the space of probability measures and by establishing the dynamic programming principle and Bellman--Isaac fixed point theorem for the lifted robust Markov decision problem. Finally, we complement our theoretical results with numerical experiments motivated by distribution planning and systemic risk in finance, highlighting the advantages of accounting for common noise uncertainty.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: