Papers
Topics
Authors
Recent
2000 character limit reached

Abductive Inference in Retrieval-Augmented Language Models: Generating and Validating Missing Premises

Published 6 Nov 2025 in cs.CL and cs.AI | (2511.04020v1)

Abstract: LLMs enhanced with retrieval -- commonly referred to as Retrieval-Augmented Generation (RAG) -- have demonstrated strong performance in knowledge-intensive tasks. However, RAG pipelines often fail when retrieved evidence is incomplete, leaving gaps in the reasoning process. In such cases, \emph{abductive inference} -- the process of generating plausible missing premises to explain observations -- offers a principled approach to bridge these gaps. In this paper, we propose a framework that integrates abductive inference into retrieval-augmented LLMs. Our method detects insufficient evidence, generates candidate missing premises, and validates them through consistency and plausibility checks. Experimental results on abductive reasoning and multi-hop QA benchmarks show that our approach improves both answer accuracy and reasoning faithfulness. This work highlights abductive inference as a promising direction for enhancing the robustness and explainability of RAG systems.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.