Papers
Topics
Authors
Recent
2000 character limit reached

Structural Priors and Modular Adapters in the Composable Fine-Tuning Algorithm of Large-Scale Models

Published 6 Nov 2025 in cs.LG | (2511.03981v1)

Abstract: This paper proposes a composable fine-tuning method that integrates graph structural priors with modular adapters to address the high computational cost and structural instability faced by large-scale pre-trained models in multi-task adaptation. The method introduces a relation matrix to model dependencies among tasks, explicitly encoding correlations between nodes and paths into graph structural priors, which provide unified structural constraints for adapter weight allocation and path selection. Modular adapters are embedded into different layers through low-rank mapping and a pluggable mechanism, enabling efficient cross-task composition and reuse under prior guidance. This mechanism not only improves parameter efficiency and training stability but also alleviates path conflicts and redundant computation in multi-task scenarios. Furthermore, experiments on hyperparameter sensitivity, environmental sensitivity, and data sensitivity are conducted to systematically analyze key factors such as routing temperature, gating thresholds, and relation matrix regularization strength, verifying the consistency and superior performance of the method under structural constraints. The results demonstrate that the proposed framework significantly enhances task prediction accuracy, adapter weight allocation precision, and overall computational efficiency while maintaining model lightweight design, highlighting the synergistic advantages of graph priors and modular mechanisms in composable fine-tuning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.