Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 41 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Design and Detection of Covert Man-in-the-Middle Cyberattacks on Water Treatment Plants (2511.03971v1)

Published 6 Nov 2025 in cs.CR, cs.SY, and eess.SY

Abstract: Cyberattacks targeting critical infrastructures, such as water treatment facilities, represent significant threats to public health, safety, and the environment. This paper introduces a systematic approach for modeling and assessing covert man-in-the-middle (MitM) attacks that leverage system identification techniques to inform the attack design. We focus on the attacker's ability to deploy a covert controller, and we evaluate countermeasures based on the Process-Aware Stealthy Attack Detection (PASAD) anomaly detection method. Using a second-order linear time-invariant with time delay model, representative of water treatment dynamics, we design and simulate stealthy attacks. Our results highlight how factors such as system noise and inaccuracies in the attacker's plant model influence the attack's stealthiness, underscoring the need for more robust detection strategies in industrial control environments.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.