Papers
Topics
Authors
Recent
2000 character limit reached

Optimizing Reasoning Efficiency through Prompt Difficulty Prediction (2511.03808v1)

Published 5 Nov 2025 in cs.LG and cs.AI

Abstract: Reasoning LLMs perform well on complex tasks but are costly to deploy due to their size and long reasoning traces. We propose a routing approach that assigns each problem to the smallest model likely to solve it, reducing compute without sacrificing accuracy. Using intermediate representations from s1.1-32B, we train lightweight predictors of problem difficulty or model correctness to guide routing across a pool of reasoning models. On diverse math benchmarks, routing improves efficiency over random assignment and matches s1.1-32B's performance while using significantly less compute. Our results demonstrate that difficulty-aware routing is effective for cost-efficient deployment of reasoning models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.