Papers
Topics
Authors
Recent
2000 character limit reached

Activation-Space Personality Steering: Hybrid Layer Selection for Stable Trait Control in LLMs (2511.03738v1)

Published 29 Oct 2025 in cs.CL

Abstract: LLMs exhibit implicit personalities in their generation, but reliably controlling or aligning these traits to meet specific needs remains an open challenge. The need for effective mechanisms for behavioural manipulation of the model during generation is a critical gap in the literature that needs to be fulfilled. Personality-aware LLMs hold a promising direction towards this objective. However, the relationship between these psychological constructs and their representations within LLMs remains underexplored and requires further investigation. Moreover, it is intriguing to understand and study the use of these representations to steer the models' behaviour. We propose a novel pipeline that extracts hidden state activations from transformer layers using the Big Five Personality Traits (Openness, Conscientiousness, Extraversion, Agreeableness and Neuroticism), which is a comprehensive and empirically validated framework to model human personality applies low-rank subspace discovery methods, and identifies trait-specific optimal layers across different model architectures for robust injection. The resulting personality-aligned directions are then operationalised through a flexible steering framework with dynamic layer selection, enabling precise control of trait expression in LLM outputs. Our findings reveal that personality traits occupy a low-rank shared subspace, and that these latent structures can be transformed into actionable mechanisms for effective steering through careful perturbations without impacting the fluency, variance and general capabilities, helping to bridge the gap between psychological theory and practical model alignment.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.