Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Flat Minima and Generalization: Insights from Stochastic Convex Optimization (2511.03548v1)

Published 5 Nov 2025 in cs.LG

Abstract: Understanding the generalization behavior of learning algorithms is a central goal of learning theory. A recently emerging explanation is that learning algorithms are successful in practice because they converge to flat minima, which have been consistently associated with improved generalization performance. In this work, we study the link between flat minima and generalization in the canonical setting of stochastic convex optimization with a non-negative, $\beta$-smooth objective. Our first finding is that, even in this fundamental and well-studied setting, flat empirical minima may incur trivial $\Omega(1)$ population risk while sharp minima generalizes optimally. Then, we show that this poor generalization behavior extends to two natural ''sharpness-aware'' algorithms originally proposed by Foret et al. (2021), designed to bias optimization toward flat solutions: Sharpness-Aware Gradient Descent (SA-GD) and Sharpness-Aware Minimization (SAM). For SA-GD, which performs gradient steps on the maximal loss in a predefined neighborhood, we prove that while it successfully converges to a flat minimum at a fast rate, the population risk of the solution can still be as large as $\Omega(1)$, indicating that even flat minima found algorithmically using a sharpness-aware gradient method might generalize poorly. For SAM, a computationally efficient approximation of SA-GD based on normalized ascent steps, we show that although it minimizes the empirical loss, it may converge to a sharp minimum and also incur population risk $\Omega(1)$. Finally, we establish population risk upper bounds for both SA-GD and SAM using algorithmic stability techniques.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: