Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 180 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 42 tok/s Pro
GPT-4o 66 tok/s Pro
Kimi K2 163 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Pure minimal injective resolutions and perfect modules for lattices (2511.03385v1)

Published 5 Nov 2025 in math.RT and math.CO

Abstract: In a recent article, Iyama and Marczinzik showed that a lattice is distributive if and only if the incidence algebra is Auslander regular, giving a new connection between homological algebra and lattice theory. In this article we study when a distributive lattice has a pure minimal injective coresolution, a notion first introduced and studied in a work of Ajitabh, Smith and Zhang. We will see that this problem naturally leads to studying when certain antichain modules are perfect modules. We give a classification of perfect antichain modules under the assumption that their canonical antichain resolution is minimal and use this to give a completion classification in lattice theoretic terms of incidence algebras of distributive lattices with pure minimal injective coresolution.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: