Branch-and-Cut for Computing Approximate Equilibria of Mixed-Integer Generalized Nash Games (2511.03340v1)
Abstract: Generalized Nash equilibrium problems with mixed-integer variables constitute an important class of games in which each player solves a mixed-integer optimization problem, where both the objective and the feasible set is parameterized by the rivals' strategies. However, such games are known for failing to admit exact equilibria and also the assumption of all players being able to solve nonconvex problems to global optimality is questionable. This motivates the study of approximate equilibria. In this work, we consider an approximation concept that incorporates both multiplicative and additive relaxations of optimality. We propose a branch-and-cut (B&C) method that computes such approximate equilibria or proves its non-existence. For this, we adopt the idea of intersection cuts and show the existence of such cuts under the condition that the constraints are linear and each player's cost function is either convex in the entire strategy profile, or, concave in the entire strategy profile and linear in the rivals' strategies. For the special case of standard Nash equilibrium problems, we introduce an alternative type of cut and show that the method terminates finitely, provided that each player has only finitely many distinct best-response sets. Finally, on the basis of the B&C method, we introduce a single-tree binary-search method to compute best-approximate equilibria under some simplifying assumptions. We implemented these methods and present numerical results for a class of mixed-integer flow games.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.