Evolutionary Dynamics in Continuous-time Finite-state Mean Field Games - Part II: Stability (2511.03297v1)
Abstract: We study a dynamic game with a large population of players who choose actions from a finite set in continuous time. Each player has a state in a finite state space that evolves stochastically with their actions. A player's reward depends not only on their own state and action but also on the distribution of states and actions across the population, capturing effects such as congestion in traffic networks. In Part I, we introduced an evolutionary model and a new solution concept - the mixed stationary Nash Equilibrium (MSNE) - which coincides with the rest points of the mean field evolutionary model under meaningful families of revision protocols. In this second part, we investigate the evolutionary stability of MSNE. We derive conditions on both the structure of the MSNE and the game's payoff map that ensure local and global stability under evolutionary dynamics. These results characterize when MSNE can robustly emerge and persist against strategic deviations, thereby providing insight into its long-term viability in large population dynamic games.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.