Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 130 tok/s
Gemini 3.0 Pro 29 tok/s Pro
Gemini 2.5 Flash 145 tok/s Pro
Kimi K2 191 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

UMDAM: A Unified Data Layout and DRAM Address Mapping for Heterogenous NPU-PIM (2511.03293v1)

Published 5 Nov 2025 in cs.DC

Abstract: LLMs are increasingly deployed on edge devices with Neural Processing Units (NPUs), yet the decode phase remains memory-intensive, limiting performance. Processing-in-Memory (PIM) offers a promising solution, but co-executing NPU-PIM systems face challenges such as data layout mismatches, bandwidth loss, and redundant storage. To address these issues, we propose UMDAM, a unified memory-affinity data layout and DRAM address mapping scheme tailored for NPU-PIM co-execution. UMDAM employs a column-major, tile-based layout and a configurable DRAM mapping strategy to ensure compatibility with NPU computation while maximizing PIM efficiency -- without introducing extra memory overhead or bandwidth loss. Comprehensive evaluations on OPT models demonstrate that UMDAM reduces time-to-first-token (TTFT) by up to 3.0x and time-to-last-token (TTLT) by 2.18x, significantly improving end-to-end LLM inference efficiency on edge devices.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.