Papers
Topics
Authors
Recent
2000 character limit reached

Multi-Objective Adaptive Rate Limiting in Microservices Using Deep Reinforcement Learning (2511.03279v1)

Published 5 Nov 2025 in cs.LG

Abstract: As cloud computing and microservice architectures become increasingly prevalent, API rate limiting has emerged as a critical mechanism for ensuring system stability and service quality. Traditional rate limiting algorithms, such as token bucket and sliding window, while widely adopted, struggle to adapt to dynamic traffic patterns and varying system loads. This paper proposes an adaptive rate limiting strategy based on deep reinforcement learning that dynamically balances system throughput and service latency. We design a hybrid architecture combining Deep Q-Network (DQN) and Asynchronous Advantage Actor-Critic (A3C) algorithms, modeling the rate limiting decision process as a Markov Decision Process. The system continuously monitors microservice states and learns optimal rate limiting policies through environmental interaction. Extensive experiments conducted in a Kubernetes cluster environment demonstrate that our approach achieves 23.7% throughput improvement and 31.4% P99 latency reduction compared to traditional fixed-threshold strategies under high-load scenarios. Results from a 90-day production deployment handling 500 million daily requests validate the practical effectiveness of the proposed method, with 82% reduction in service degradation incidents and 68% decrease in manual interventions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.