Papers
Topics
Authors
Recent
2000 character limit reached

A Feedback-Control Framework for Efficient Dataset Collection from In-Vehicle Data Streams (2511.03239v1)

Published 5 Nov 2025 in cs.LG and cs.CV

Abstract: Modern AI systems are increasingly constrained not by model capacity but by the quality and diversity of their data. Despite growing emphasis on data-centric AI, most datasets are still gathered in an open-loop manner which accumulates redundant samples without feedback from the current coverage. This results in inefficient storage, costly labeling, and limited generalization. To address this, this paper introduces \ac{FCDC}, a paradigm that formulates data collection as a closed-loop control problem. \ac{FCDC} continuously approximates the state of the collected data distribution using an online probabilistic model and adaptively regulates sample retention using based on feedback signals such as likelihood and Mahalanobis distance. Through this feedback mechanism, the system dynamically balances exploration and exploitation, maintains dataset diversity, and prevents redundancy from accumulating over time. Besides showcasing the controllability of \ac{FCDC} on a synthetic dataset, experiments on a real data stream show that \ac{FCDC} produces more balanced datasets by $\SI{25.9}{\percent}$ while reducing data storage by $\SI{39.8}{\percent}$. These results demonstrate that data collection itself can be actively controlled, transforming collection from a passive pipeline stage into a self-regulating, feedback-driven process at the core of data-centric AI.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.