Incorporating Quality of Life in Climate Adaptation Planning via Reinforcement Learning (2511.03238v1)
Abstract: Urban flooding is expected to increase in frequency and severity as a consequence of climate change, causing wide-ranging impacts that include a decrease in urban Quality of Life (QoL). Meanwhile, policymakers must devise adaptation strategies that can cope with the uncertain nature of climate change and the complex and dynamic nature of urban flooding. Reinforcement Learning (RL) holds significant promise in tackling such complex, dynamic, and uncertain problems. Because of this, we use RL to identify which climate adaptation pathways lead to a higher QoL in the long term. We do this using an Integrated Assessment Model (IAM) which combines a rainfall projection model, a flood model, a transport accessibility model, and a quality of life index. Our preliminary results suggest that this approach can be used to learn optimal adaptation measures and it outperforms other realistic and real-world planning strategies. Our framework is publicly available: https://github.com/MLSM-at-DTU/maat_qol_framework.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.