Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 186 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 65 tok/s Pro
Kimi K2 229 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Towards Scalable Backpropagation-Free Gradient Estimation (2511.03110v1)

Published 5 Nov 2025 in cs.LG

Abstract: While backpropagation--reverse-mode automatic differentiation--has been extraordinarily successful in deep learning, it requires two passes (forward and backward) through the neural network and the storage of intermediate activations. Existing gradient estimation methods that instead use forward-mode automatic differentiation struggle to scale beyond small networks due to the high variance of the estimates. Efforts to mitigate this have so far introduced significant bias to the estimates, reducing their utility. We introduce a gradient estimation approach that reduces both bias and variance by manipulating upstream Jacobian matrices when computing guess directions. It shows promising results and has the potential to scale to larger networks, indeed performing better as the network width is increased. Our understanding of this method is facilitated by analyses of bias and variance, and their connection to the low-dimensional structure of neural network gradients.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.