Quantifying Articulatory Coordination as a Biomarker for Schizophrenia (2511.03084v1)
Abstract: Advances in AI and deep learning have improved diagnostic capabilities in healthcare, yet limited interpretability continues to hinder clinical adoption. Schizophrenia, a complex disorder with diverse symptoms including disorganized speech and social withdrawal, demands tools that capture symptom severity and provide clinically meaningful insights beyond binary diagnosis. Here, we present an interpretable framework that leverages articulatory speech features through eigenspectra difference plots and a weighted sum with exponential decay (WSED) to quantify vocal tract coordination. Eigenspectra plots effectively distinguished complex from simpler coordination patterns, and WSED scores reliably separated these groups, with ambiguity confined to a narrow range near zero. Importantly, WSED scores correlated not only with overall BPRS severity but also with the balance between positive and negative symptoms, reflecting more complex coordination in subjects with pronounced positive symptoms and the opposite trend for stronger negative symptoms. This approach offers a transparent, severity-sensitive biomarker for schizophrenia, advancing the potential for clinically interpretable speech-based assessment tools.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.