Papers
Topics
Authors
Recent
2000 character limit reached

Min-Max Optimization Is Strictly Easier Than Variational Inequalities (2511.03052v1)

Published 4 Nov 2025 in math.OC, cs.DS, and cs.LG

Abstract: Classically, a mainstream approach for solving a convex-concave min-max problem is to instead solve the variational inequality problem arising from its first-order optimality conditions. Is it possible to solve min-max problems faster by bypassing this reduction? This paper initiates this investigation. We show that the answer is yes in the textbook setting of unconstrained quadratic objectives: the optimal convergence rate for first-order algorithms is strictly better for min-max problems than for the corresponding variational inequalities. The key reason that min-max algorithms can be faster is that they can exploit the asymmetry of the min and max variables--a property that is lost in the reduction to variational inequalities. Central to our analyses are sharp characterizations of optimal convergence rates in terms of extremal polynomials which we compute using Green's functions and conformal mappings.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.