Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Comprehensive Assessment of LiDAR Evaluation Metrics: A Comparative Study Using Simulated and Real Data (2511.02994v1)

Published 4 Nov 2025 in cs.RO and cs.CV

Abstract: For developing safe Autonomous Driving Systems (ADS), rigorous testing is required before they are deemed safe for road deployments. Since comprehensive conventional physical testing is impractical due to cost and safety concerns, Virtual Testing Environments (VTE) can be adopted as an alternative. Comparing VTE-generated sensor outputs against their real-world analogues can be a strong indication that the VTE accurately represents reality. Correspondingly, this work explores a comprehensive experimental approach to finding evaluation metrics suitable for comparing real-world and simulated LiDAR scans. The metrics were tested in terms of sensitivity and accuracy with different noise, density, distortion, sensor orientation, and channel settings. From comparing the metrics, we found that Density Aware Chamfer Distance (DCD) works best across all cases. In the second step of the research, a Virtual Testing Environment was generated using real LiDAR scan data. The data was collected in a controlled environment with only static objects using an instrumented vehicle equipped with LiDAR, IMU and cameras. Simulated LiDAR scans were generated from the VTEs using the same pose as real LiDAR scans. The simulated and LiDAR scans were compared in terms of model perception and geometric similarity. Actual and simulated LiDAR scans have a similar semantic segmentation output with a mIoU of 21\% with corrected intensity and an average density aware chamfer distance (DCD) of 0.63. This indicates a slight difference in the geometric properties of simulated and real LiDAR scans and a significant difference between model outputs. During the comparison, density-aware chamfer distance was found to be the most correlated among the metrics with perception methods.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.