Papers
Topics
Authors
Recent
2000 character limit reached

Digital Twin-Driven Pavement Health Monitoring and Maintenance Optimization Using Graph Neural Networks (2511.02957v1)

Published 4 Nov 2025 in cs.LG, cs.CE, cs.ET, cs.NE, cs.SY, and eess.SY

Abstract: Pavement infrastructure monitoring is challenged by complex spatial dependencies, changing environmental conditions, and non-linear deterioration across road networks. Traditional Pavement Management Systems (PMS) remain largely reactive, lacking real-time intelligence for failure prevention and optimal maintenance planning. To address this, we propose a unified Digital Twin (DT) and Graph Neural Network (GNN) framework for scalable, data-driven pavement health monitoring and predictive maintenance. Pavement segments and spatial relations are modeled as graph nodes and edges, while real-time UAV, sensor, and LiDAR data stream into the DT. The inductive GNN learns deterioration patterns from graph-structured inputs to forecast distress and enable proactive interventions. Trained on a real-world-inspired dataset with segment attributes and dynamic connectivity, our model achieves an R2 of 0.3798, outperforming baseline regressors and effectively capturing non-linear degradation. We also develop an interactive dashboard and reinforcement learning module for simulation, visualization, and adaptive maintenance planning. This DT-GNN integration enhances forecasting precision and establishes a closed feedback loop for continuous improvement, positioning the approach as a foundation for proactive, intelligent, and sustainable pavement management, with future extensions toward real-world deployment, multi-agent coordination, and smart-city integration.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.