Papers
Topics
Authors
Recent
2000 character limit reached

Generative Hints (2511.02933v1)

Published 4 Nov 2025 in cs.CV and cs.AI

Abstract: Data augmentation is widely used in vision to introduce variation and mitigate overfitting, through enabling models to learn invariant properties, such as spatial invariance. However, these properties are not fully captured by data augmentation alone, since it attempts to learn the property on transformations of the training data only. We propose generative hints, a training methodology that directly enforces known invariances in the entire input space. Our approach leverages a generative model trained on the training set to approximate the input distribution and generate unlabeled images, which we refer to as virtual examples. These virtual examples are used to enforce functional properties known as hints. In generative hints, although the training dataset is fully labeled, the model is trained in a semi-supervised manner on both the classification and hint objectives, using the unlabeled virtual examples to guide the model in learning the desired hint. Across datasets, architectures, and loss functions, generative hints consistently outperform standard data augmentation when learning the same property. On popular fine-grained visual classification benchmarks, we achieved up to 1.78% top-1 accuracy improvement (0.63% on average) over fine-tuned models with data augmentation and an average performance boost of 1.286% on the CheXpert X-ray dataset.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube