Papers
Topics
Authors
Recent
2000 character limit reached

Cache Mechanism for Agent RAG Systems (2511.02919v1)

Published 4 Nov 2025 in cs.CL

Abstract: Recent advances in LLM-based agents have been propelled by Retrieval-Augmented Generation (RAG), which grants the models access to vast external knowledge bases. Despite RAG's success in improving agent performance, agent-level cache management, particularly constructing, maintaining, and updating a compact, relevant corpus dynamically tailored to each agent's need, remains underexplored. Therefore, we introduce ARC (Agent RAG Cache Mechanism), a novel, annotation-free caching framework that dynamically manages small, high-value corpora for each agent. By synthesizing historical query distribution patterns with the intrinsic geometry of cached items in the embedding space, ARC automatically maintains a high-relevance cache. With comprehensive experiments on three retrieval datasets, our experimental results demonstrate that ARC reduces storage requirements to 0.015% of the original corpus while offering up to 79.8% has-answer rate and reducing average retrieval latency by 80%. Our results demonstrate that ARC can drastically enhance efficiency and effectiveness in RAG-powered LLM agents.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.