Papers
Topics
Authors
Recent
2000 character limit reached

Analysis of AdvFusion: Adapter-based Multilingual Learning for Code Large Language Models

Published 3 Nov 2025 in cs.SE, cs.AI, and cs.PL | (2511.02869v1)

Abstract: Programming languages can benefit from one another by utilizing a LLM for software engineering tasks. Full fine-tuning and Parameter Efficient Fine-Tuning (PEFT) of Code LLMs (Code-LMs) has been explored for multilingual knowledge transfer. AdapterFusion is a PEFT architecture that aims to enhance task performance by leveraging information from multiple programming languages, but primarily focuses on the target programming language. In our previous work, we proposed AdvFusion, a novel PEFT-based approach that effectively learns from other programming languages before adapting to the target task. Though previous experiments showed that AdvFusion outperformed AdapterFusion and LoRA, it was applied on pre-trained Code-LMs and was limited to only two tasks, code summarization and method name prediction. In this study, we expanded our work and investigated AdvFusion on Code LLMs (Code-LLMs), considering three new tasks: code generation, code translation, and commit message generation. We observed that different Code-LLMs/tasks exhibit different characteristics. In code generation, AdvFusion outperformed AdapterFusion but not other PEFT methods (LoRA, Compacter, and TaskAdapter). In commit message generation, AdapterFusion performed better than AdvFusion, and contrary to code generation, we found that the other PEFT methods do not have better performance. In code translation, AdvFusion performed worse than AdapterFusion overall, with the performance gap marginally widening as the model size increases. However, consistent with code generation, other PEFT methods showed better performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.