SELF-REDRAFT: Eliciting Intrinsic Exploration-Exploitation Balance in Test-Time Scaling for Code Generation (2511.02854v1)
Abstract: Test-time scaling without interpreter feedback is essential for real-world code generation scenarios where test cases are not readily available. While existing paradigms often rely on either greedy exploitation (i.e., iterative refinement) or stochastic exploration (i.e., relying on sample-based voting or reranking mechanisms), the balance between these two dimensions remains underexplored. To investigate the LLM's intrinsic ability to balance exploitation and exploration, we introduce SELF-REDRAFT, a framework built upon Self-Refine that encourages the model to propose new drafts for solutions that are fundamentally flawed. Our results show that SELF-REDRAFT consistently achieves better performance than Self-Refine when converged under the same maximum number of iterations. Still, we observe that significant room for improvement remains, largely due to two core aspects of current self-redraft capabilities: constrained capacity for generating instructive feedback and fragile discriminative judgment. We also find that balancing strategies vary notably across different LLMs, reflecting distinct, model-specific behaviors. Overall, our study establishes a baseline for intrinsic exploration-exploitation balancing in test-time scaling and identifies feedback and discrimination as key areas with potential for future advances.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.