LLM-Supported Formal Knowledge Representation for Enhancing Control Engineering Content with an Interactive Semantic Layer (2511.02759v1)
Abstract: The rapid growth of research output in control engineering calls for new approaches to structure and formalize domain knowledge. This paper briefly describes an LLM-supported method for semi-automated generation of formal knowledge representations that combine human readability with machine interpretability and increased expressiveness. Based on the Imperative Representation of Knowledge (PyIRK) framework, we demonstrate how LLMs can assist in transforming natural-language descriptions and mathematical definitions (available as LaTeX source code) into a formalized knowledge graph. As a first application we present the generation of an ``interactive semantic layer'' to enhance the source documents in order to facilitate knowledge transfer. From our perspective this contributes to the vision of easily accessible, collaborative, and verifiable knowledge bases for the control engineering domain.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.