Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Mixing of general biased adjacent transposition chains (2511.02725v1)

Published 4 Nov 2025 in math.PR and cs.DS

Abstract: We analyze the general biased adjacent transposition shuffle process, which is a well-studied Markov chain on the symmetric group $S_n$. In each step, an adjacent pair of elements $i$ and $j$ are chosen, and then $i$ is placed ahead of $j$ with probability $p_{ij}$. This Markov chain arises in the study of self-organizing lists in theoretical computer science, and has close connections to exclusion processes from statistical physics and probability theory. Fill (2003) conjectured that for general $p_{ij}$ satisfying $p_{ij} \ge 1/2$ for all $i<j$ and a simple monotonicity condition, the mixing time is polynomial. We prove that for any fixed $\varepsilon\>0$, as long as $p_{ij} >1/2+\varepsilon$ for all $i<j$, the mixing time is $\Theta(n2)$ and exhibits pre-cutoff. Our key technical result is a form of spatial mixing for the general biased transposition chain after a suitable burn-in period. In order to use this for a mixing time bound, we adapt multiscale arguments for mixing times from the setting of spin systems to the symmetric group.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: