Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Curriculum Design for Trajectory-Constrained Agent: Compressing Chain-of-Thought Tokens in LLMs (2511.02690v1)

Published 4 Nov 2025 in cs.LG

Abstract: Training agents to operate under strict constraints during deployment, such as limited resource budgets or stringent safety requirements, presents significant challenges, especially when these constraints render the task complex. In this work, we propose a curriculum learning strategy that gradually tightens constraints during training, enabling the agent to incrementally master the deployment requirements. Inspired by self-paced learning techniques in unconstrained reinforcement learning (RL), our approach facilitates a smoother transition to challenging environments by initially training on simplified versions of the constraints and progressively introducing the full deployment conditions. We provide a theoretical analysis using an RL agent in a binary-tree Markov Decision Process (MDP) to demonstrate that our curriculum strategy can accelerate training relative to a baseline approach that imposes the trajectory constraints from the outset. Moreover, we empirically validate the effectiveness and generality of our method across both RL and LLM agents in diverse settings, including a binary-tree MDP, a multi-task navigation domain, and a math reasoning task with two benchmarks. These results highlight the potential of curriculum design in enhancing the efficiency and performance of agents operating under complex trajectory constraints during deployment. Moreover, when applied to LLMs, our strategy enables compression of output chain-of-thought tokens, achieving a substantial inference speedup on consumer hardware, demonstrating its effectiveness for resource-constrained deployment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.