Papers
Topics
Authors
Recent
2000 character limit reached

RL-Aided Cognitive ISAC: Robust Detection and Sensing-Communication Trade-offs (2511.02672v1)

Published 4 Nov 2025 in eess.SP and cs.LG

Abstract: This paper proposes a reinforcement learning (RL)-aided cognitive framework for massive MIMO-based integrated sensing and communication (ISAC) systems employing a uniform planar array (UPA). The focus is on enhancing radar sensing performance in environments with unknown and dynamic disturbance characteristics. A Wald-type detector is employed for robust target detection under non-Gaussian clutter, while a SARSA-based RL algorithm enables adaptive estimation of target positions without prior environmental knowledge. Based on the RL-derived sensing information, a joint waveform optimization strategy is formulated to balance radar sensing accuracy and downlink communication throughput. The resulting design provides an adaptive trade-off between detection performance and achievable sum rate through an analytically derived closed-form solution. Monte Carlo simulations demonstrate that the proposed cognitive ISAC framework achieves significantly improved detection probability compared to orthogonal and non-learning adaptive baselines, while maintaining competitive communication performance. These results underline the potential of RL-assisted sensing for robust and spectrum-efficient ISAC in next-generation wireless networks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: