Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Adaptive GR(1) Specification Repair for Liveness-Preserving Shielding in Reinforcement Learning (2511.02605v1)

Published 4 Nov 2025 in cs.AI

Abstract: Shielding is widely used to enforce safety in reinforcement learning (RL), ensuring that an agent's actions remain compliant with formal specifications. Classical shielding approaches, however, are often static, in the sense that they assume fixed logical specifications and hand-crafted abstractions. While these static shields provide safety under nominal assumptions, they fail to adapt when environment assumptions are violated. In this paper, we develop the first adaptive shielding framework - to the best of our knowledge - based on Generalized Reactivity of rank 1 (GR(1)) specifications, a tractable and expressive fragment of Linear Temporal Logic (LTL) that captures both safety and liveness properties. Our method detects environment assumption violations at runtime and employs Inductive Logic Programming (ILP) to automatically repair GR(1) specifications online, in a systematic and interpretable way. This ensures that the shield evolves gracefully, ensuring liveness is achievable and weakening goals only when necessary. We consider two case studies: Minepump and Atari Seaquest; showing that (i) static symbolic controllers are often severely suboptimal when optimizing for auxiliary rewards, and (ii) RL agents equipped with our adaptive shield maintain near-optimal reward and perfect logical compliance compared with static shields.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.