A Cognitive Process-Inspired Architecture for Subject-Agnostic Brain Visual Decoding (2511.02565v1)
Abstract: Subject-agnostic brain decoding, which aims to reconstruct continuous visual experiences from fMRI without subject-specific training, holds great potential for clinical applications. However, this direction remains underexplored due to challenges in cross-subject generalization and the complex nature of brain signals. In this work, we propose Visual Cortex Flow Architecture (VCFlow), a novel hierarchical decoding framework that explicitly models the ventral-dorsal architecture of the human visual system to learn multi-dimensional representations. By disentangling and leveraging features from early visual cortex, ventral, and dorsal streams, VCFlow captures diverse and complementary cognitive information essential for visual reconstruction. Furthermore, we introduce a feature-level contrastive learning strategy to enhance the extraction of subject-invariant semantic representations, thereby enhancing subject-agnostic applicability to previously unseen subjects. Unlike conventional pipelines that need more than 12 hours of per-subject data and heavy computation, VCFlow sacrifices only 7\% accuracy on average yet generates each reconstructed video in 10 seconds without any retraining, offering a fast and clinically scalable solution. The source code will be released upon acceptance of the paper.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.