Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 109 tok/s
Gemini 3.0 Pro 52 tok/s Pro
Gemini 2.5 Flash 159 tok/s Pro
Kimi K2 203 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cluster Size Matters: A Comparative Study of Notip and pARI for Post Hoc Inference in fMRI (2511.02422v1)

Published 4 Nov 2025 in math.ST, stat.AP, stat.ME, and stat.TH

Abstract: All Resolutions Inference (ARI) is a post hoc inference method for functional Magnetic Resonance Imaging (fMRI) data analysis that provides valid lower bounds on the proportion of truly active voxels within any, possibly data-driven, cluster. As such, it addresses the paradox of spatial specificity encountered with more classical cluster-extent thresholding methods. It allows the cluster-forming threshold to be increased in order to locate the signal with greater spatial precision without overfitting, also known as the drill-down approach. Notip and pARI are two recent permutation-based extensions of ARI designed to increase statistical power by accounting for the strong dependence structure typical of fMRI data. A recent comparison between these papers based on large voxel clusters concluded that pARI outperforms Notip. We revisit this conclusion by conducting a systematic comparison of the two. Our reanalysis of the same fMRI data sets from the Neurovault database demonstrates the existence of complementary performance regimes: while pARI indeed achieves higher sensitivity for large clusters, Notip provides more informative and robust results for smaller clusters. In particular, while Notip supports informative ``drill-down'' exploration into subregions of activation, pARI often yields non-informative bounds in such cases, and can even underperform the baseline ARI method.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: