A Spatially Informed Gaussian Process UCB Method for Decentralized Coverage Control (2511.02398v1)
Abstract: We present a novel decentralized algorithm for coverage control in unknown spatial environments modeled by Gaussian Processes (GPs). To trade-off between exploration and exploitation, each agent autonomously determines its trajectory by minimizing a local cost function. Inspired by the GP-UCB (Upper Confidence Bound for GPs) acquisition function, the proposed cost combines the expected locational cost with a variance-based exploration term, guiding agents toward regions that are both high in predicted density and model uncertainty. Compared to previous work, our algorithm operates in a fully decentralized fashion, relying only on local observations and communication with neighboring agents. In particular, agents periodically update their inducing points using a greedy selection strategy, enabling scalable online GP updates. We demonstrate the effectiveness of our algorithm in simulation.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.