Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Reducing normalizing flow complexity for MCMC preconditioning (2511.02345v1)

Published 4 Nov 2025 in cs.LG, stat.CO, and stat.ML

Abstract: Preconditioning is a key component of MCMC algorithms that improves sampling efficiency by facilitating exploration of geometrically complex target distributions through an invertible map. While linear preconditioners are often sufficient for moderately complex target distributions, recent work has explored nonlinear preconditioning with invertible neural networks as components of normalizing flows (NFs). However, empirical and theoretical studies show that overparameterized NF preconditioners can degrade sampling efficiency and fit quality. Moreover, existing NF-based approaches do not adapt their architectures to the target distribution. Related work outside of MCMC similarly finds that suitably parameterized NFs can achieve comparable or superior performance with substantially less training time or data. We propose a factorized preconditioning architecture that reduces NF complexity by combining a linear component with a conditional NF, improving adaptability to target geometry. The linear preconditioner is applied to dimensions that are approximately Gaussian, as estimated from warmup samples, while the conditional NF models more complex dimensions. Our method yields significantly better tail samples on two complex synthetic distributions and consistently better performance on a sparse logistic regression posterior across varying likelihood and prior strengths. It also achieves higher effective sample sizes on hierarchical Bayesian model posteriors with weak likelihoods and strong funnel geometries. This approach is particularly relevant for hierarchical Bayesian model analyses with limited data and could inform current theoretical and software strides in neural MCMC design.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 18 likes.

Upgrade to Pro to view all of the tweets about this paper: