Probabilistic Graph Cuts (2511.02272v1)
Abstract: Probabilistic relaxations of graph cuts offer a differentiable alternative to spectral clustering, enabling end-to-end and online learning without eigendecompositions, yet prior work centered on RatioCut and lacked general guarantees and principled gradients. We present a unified probabilistic framework that covers a wide class of cuts, including Normalized Cut. Our framework provides tight analytic upper bounds on expected discrete cuts via integral representations and Gauss hypergeometric functions with closed-form forward and backward. Together, these results deliver a rigorous, numerically stable foundation for scalable, differentiable graph partitioning covering a wide range of clustering and contrastive learning objectives.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.