Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 177 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Opportunistic Expert Activation: Batch-Aware Expert Routing for Faster Decode Without Retraining (2511.02237v1)

Published 4 Nov 2025 in cs.LG

Abstract: An increasing number of LLMs employ Mixture-of-Experts (MoE) architectures where the feed-forward layer is replaced by a pool of experts and each token only activates a small subset of them. During autoregressive generation, these models often enter a memory-bound regime even for moderate batch sizes because the average expert load grows more slowly than in an equivalent dense feedforward layer. Consequently, MoE latency is governed by the number of activated experts. We introduce a framework for dynamically re-routing token-to-expert mapping to lower this number (and thus, the decode latency) while preserving a comparable quality. Our best results use a batch-aware routing that works by having tokens piggyback experts that have already been loaded into memory due to being crucial to other tokens within the same batch. Empirically, we evaluate our method on the Qwen3-30B and Qwen3-235B models with a batch size of $16$. Without any statistically significant loss in accuracy, our approach achieves latency reductions of $39\%$ and $15\%$ in the MoE layer decode latency, respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 16 likes.

Upgrade to Pro to view all of the tweets about this paper: