Papers
Topics
Authors
Recent
2000 character limit reached

DoFlow: Causal Generative Flows for Interventional and Counterfactual Time-Series Prediction (2511.02137v1)

Published 4 Nov 2025 in stat.ML, cs.LG, and stat.ME

Abstract: Time-series forecasting increasingly demands not only accurate observational predictions but also causal forecasting under interventional and counterfactual queries in multivariate systems. We present DoFlow, a flow based generative model defined over a causal DAG that delivers coherent observational and interventional predictions, as well as counterfactuals through the natural encoding and decoding mechanism of continuous normalizing flows (CNFs). We also provide a supporting counterfactual recovery result under certain assumptions. Beyond forecasting, DoFlow provides explicit likelihoods of future trajectories, enabling principled anomaly detection. Experiments on synthetic datasets with various causal DAG and real world hydropower and cancer treatment time series show that DoFlow achieves accurate system-wide observational forecasting, enables causal forecasting over interventional and counterfactual queries, and effectively detects anomalies. This work contributes to the broader goal of unifying causal reasoning and generative modeling for complex dynamical systems.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 19 likes about this paper.