Papers
Topics
Authors
Recent
2000 character limit reached

Variance-Aware Feel-Good Thompson Sampling for Contextual Bandits (2511.02123v1)

Published 3 Nov 2025 in cs.LG, math.OC, and stat.ML

Abstract: Variance-dependent regret bounds have received increasing attention in recent studies on contextual bandits. However, most of these studies are focused on upper confidence bound (UCB)-based bandit algorithms, while sampling based bandit algorithms such as Thompson sampling are still understudied. The only exception is the LinVDTS algorithm (Xu et al., 2023), which is limited to linear reward function and its regret bound is not optimal with respect to the model dimension. In this paper, we present FGTSVA, a variance-aware Thompson Sampling algorithm for contextual bandits with general reward function with optimal regret bound. At the core of our analysis is an extension of the decoupling coefficient, a technique commonly used in the analysis of Feel-good Thompson sampling (FGTS) that reflects the complexity of the model space. With the new decoupling coefficient denoted by $\mathrm{dc}$, FGTS-VA achieves the regret of $\tilde{O}(\sqrt{\mathrm{dc}\cdot\log|\mathcal{F}|\sum_{t=1}Tσ_t2}+\mathrm{dc})$, where $|\mathcal{F}|$ is the size of the model space, $T$ is the total number of rounds, and $σ_t2$ is the subgaussian norm of the noise (e.g., variance when the noise is Gaussian) at round $t$. In the setting of contextual linear bandits, the regret bound of FGTSVA matches that of UCB-based algorithms using weighted linear regression (Zhou and Gu, 2022).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 14 likes.

Upgrade to Pro to view all of the tweets about this paper: