Variance-Aware Feel-Good Thompson Sampling for Contextual Bandits (2511.02123v1)
Abstract: Variance-dependent regret bounds have received increasing attention in recent studies on contextual bandits. However, most of these studies are focused on upper confidence bound (UCB)-based bandit algorithms, while sampling based bandit algorithms such as Thompson sampling are still understudied. The only exception is the LinVDTS algorithm (Xu et al., 2023), which is limited to linear reward function and its regret bound is not optimal with respect to the model dimension. In this paper, we present FGTSVA, a variance-aware Thompson Sampling algorithm for contextual bandits with general reward function with optimal regret bound. At the core of our analysis is an extension of the decoupling coefficient, a technique commonly used in the analysis of Feel-good Thompson sampling (FGTS) that reflects the complexity of the model space. With the new decoupling coefficient denoted by $\mathrm{dc}$, FGTS-VA achieves the regret of $\tilde{O}(\sqrt{\mathrm{dc}\cdot\log|\mathcal{F}|\sum_{t=1}Tσ_t2}+\mathrm{dc})$, where $|\mathcal{F}|$ is the size of the model space, $T$ is the total number of rounds, and $σ_t2$ is the subgaussian norm of the noise (e.g., variance when the noise is Gaussian) at round $t$. In the setting of contextual linear bandits, the regret bound of FGTSVA matches that of UCB-based algorithms using weighted linear regression (Zhou and Gu, 2022).
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.