Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 40 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

What is special about the Kirkwood-Dirac distributions? (2511.01996v1)

Published 3 Nov 2025 in quant-ph

Abstract: Among all possible quasiprobability representations of quantum mechanics, the family of Kirkwood-Dirac representations has come to the foreground in recent years because of the flexibility they offer in numerous applications. This raises the question of their characterisation: what makes Kirkwood-Dirac representations special among all possible choices? We show the following. For two observables $\hat A$ and $\hat B$, consider all quasiprobability representations of quantum mechanics defined on the joint spectrum of $\hat A$ and $\hat B$, and that have the correct marginal Born probabilities for $\hat A$ and $\hat B$. For any such Born-compatible quasiprobability representation, we show that there exists, for each observable $\hat{X}$, a naturally associated conditional expectation, given $\hat B$. In addition, among the aforementioned representations, only the Kirkwood-Dirac representation has the following property: its associated conditional expectation of $\hat{X}$ given $\hat{B}$ coincides with the best predictor of $\hat{X}$ by a function of $\hat B$, for all $\hat X$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 5 likes.

Upgrade to Pro to view all of the tweets about this paper: