Papers
Topics
Authors
Recent
2000 character limit reached

SEAL - A Symmetry EncourAging Loss for High Energy Physics (2511.01982v1)

Published 3 Nov 2025 in hep-ph, cs.LG, and hep-ex

Abstract: Physical symmetries provide a strong inductive bias for constructing functions to analyze data. In particular, this bias may improve robustness, data efficiency, and interpretability of machine learning models. However, building machine learning models that explicitly respect symmetries can be difficult due to the dedicated components required. Moreover, real-world experiments may not exactly respect fundamental symmetries at the level of finite granularities and energy thresholds. In this work, we explore an alternative approach to create symmetry-aware machine learning models. We introduce soft constraints that allow the model to decide the importance of added symmetries during the learning process instead of enforcing exact symmetries. We investigate two complementary approaches, one that penalizes the model based on specific transformations of the inputs and one inspired by group theory and infinitesimal transformations of the inputs. Using top quark jet tagging and Lorentz equivariance as examples, we observe that the addition of the soft constraints leads to more robust performance while requiring negligible changes to current state-of-the-art models.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: