Papers
Topics
Authors
Recent
2000 character limit reached

Variational Geometry-aware Neural Network based Method for Solving High-dimensional Diffeomorphic Mapping Problems (2511.01911v1)

Published 31 Oct 2025 in cs.LG, cs.AI, cs.NA, math.DG, and math.NA

Abstract: Traditional methods for high-dimensional diffeomorphic mapping often struggle with the curse of dimensionality. We propose a mesh-free learning framework designed for $n$-dimensional mapping problems, seamlessly combining variational principles with quasi-conformal theory. Our approach ensures accurate, bijective mappings by regulating conformality distortion and volume distortion, enabling robust control over deformation quality. The framework is inherently compatible with gradient-based optimization and neural network architectures, making it highly flexible and scalable to higher-dimensional settings. Numerical experiments on both synthetic and real-world medical image data validate the accuracy, robustness, and effectiveness of the proposed method in complex registration scenarios.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.