Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 57 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Thinking Like a Student: AI-Supported Reflective Planning in a Theory-Intensive Computer Science Course (2511.01906v1)

Published 31 Oct 2025 in cs.CY, cs.AI, and cs.FL

Abstract: In the aftermath of COVID-19, many universities implemented supplementary "reinforcement" roles to support students in demanding courses. Although the name for such roles may differ between institutions, the underlying idea of providing structured supplementary support is common. However, these roles were often poorly defined, lacking structured materials, pedagogical oversight, and integration with the core teaching team. This paper reports on the redesign of reinforcement sessions in a challenging undergraduate course on formal methods and computational models, using a LLM as a reflective planning tool. The LLM was prompted to simulate the perspective of a second-year student, enabling the identification of conceptual bottlenecks, gaps in intuition, and likely reasoning breakdowns before classroom delivery. These insights informed a structured, repeatable session format combining targeted review, collaborative examples, independent student work, and guided walkthroughs. Conducted over a single semester, the intervention received positive student feedback, indicating increased confidence, reduced anxiety, and improved clarity, particularly in abstract topics such as the pumping lemma and formal language expressive power comparisons. The findings suggest that reflective, instructor-facing use of LLMs can enhance pedagogical design in theoretically dense domains and may be adaptable to other cognitively demanding computer science courses.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.