Papers
Topics
Authors
Recent
2000 character limit reached

Towards Multi-Fidelity Scaling Laws of Neural Surrogates in CFD (2511.01830v1)

Published 3 Nov 2025 in cs.LG and physics.flu-dyn

Abstract: Scaling laws describe how model performance grows with data, parameters and compute. While large datasets can usually be collected at relatively low cost in domains such as language or vision, scientific machine learning is often limited by the high expense of generating training data through numerical simulations. However, by adjusting modeling assumptions and approximations, simulation fidelity can be traded for computational cost, an aspect absent in other domains. We investigate this trade-off between data fidelity and cost in neural surrogates using low- and high-fidelity Reynolds-Averaged Navier-Stokes (RANS) simulations. Reformulating classical scaling laws, we decompose the dataset axis into compute budget and dataset composition. Our experiments reveal compute-performance scaling behavior and exhibit budget-dependent optimal fidelity mixes for the given dataset configuration. These findings provide the first study of empirical scaling laws for multi-fidelity neural surrogate datasets and offer practical considerations for compute-efficient dataset generation in scientific machine learning.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.