Papers
Topics
Authors
Recent
2000 character limit reached

Context-Guided Decompilation: A Step Towards Re-executability

Published 3 Nov 2025 in cs.SE and cs.AI | (2511.01763v1)

Abstract: Binary decompilation plays an important role in software security analysis, reverse engineering, and malware understanding when source code is unavailable. However, existing decompilation techniques often fail to produce source code that can be successfully recompiled and re-executed, particularly for optimized binaries. Recent advances in LLMs have enabled neural approaches to decompilation, but the generated code is typically only semantically plausible rather than truly executable, limiting their practical reliability. These shortcomings arise from compiler optimizations and the loss of semantic cues in compiled code, which LLMs struggle to recover without contextual guidance. To address this challenge, we propose ICL4Decomp, a hybrid decompilation framework that leverages in-context learning (ICL) to guide LLMs toward generating re-executable source code. We evaluate our method across multiple datasets, optimization levels, and compilers, demonstrating around 40\% improvement in re-executability over state-of-the-art decompilation methods while maintaining robustness.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.